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Abstract

The propagation-mode, compacted-powder, gasless combustion synthesis of intermetallics is modeled through a
combined three-scale, particle-level/specimen-level treatment. The specimen-level treatment is based on the local volume-
averaged conservation equations for species and energy. The particle-level treatment considers a uniform temperature,
the formation of products through a diffusion-controlled heterogeneous reaction, and allows for melting of the product
assuming a distinct interface between the phases. The extent of conversion to the final product depends on the local
availability of the reactants and through a statistical model and assuming that the interparticle mass transfer resistance
is very large, it is determined a priori from the powder particle-size distribution. The influence of the particle-size
distribution on the flame structure and the propagation speed is determined using the reaction rate of an average-size
particle and also the ensemble average of the reaction rates experienced by particles of different sizes. In a follow-up
article (Part II), the results of these models are compared with each other and with experimental results. © 1998 Elsevier
Science Ltd. All rights reserved.

Nomenclature i, volumetric reaction rate [kg m=3 s7]

A, specimen peripheral area [m?] N number of classes in the discrete particle size dis-
¢, specific heat capacity [J kg ' K™'] tribution function

D diameter [m] r radial coordinate [m]

D, ¢ binary diffusivity of species A [m*s™'] R radius [m]

D, diffusion pre-exponential factor [m* s/ R, universal gas constant [J kmol ' K ']

f particle size distribution function t time [s]

F fraction T temperature [K]

hy, heat transfer coefficient between specimen and ambi- u velocity [m s~

ent [Wm 2K ] V' volume of unit-cell [m’]

i specific enthalpy [J kg™'] V, volume of specimen [m?]
(k) effective molecular thermal conductivity x axial coordinate [m]
Wm 'K Y mass fraction.

(k. effective radiant thermal conductivity

Wm™'K™

Greek symbols

AE,, diffusion activation energy [J kmol™']
Ai, specific heat of combustion [J kg™']

A, specific heat of melting [J kg™']

Ai,, specific heat of mixing [J kg ']

[ unit-cell characteristic length [m]
M  molecular weight [kg kmol™']
7y volumetric melting rate [kg m ™ s7/]

& porosity
* Corresponding author. Tel.: 001 734 936 0402; Fax: 001 734 v number of moles [kmol]
647 3170; E-mail: kaviany@umich.edu p density, mass concentration [kg m~].
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Subscripts
a ambient
ad adiabatic
A species A

species B

converted

species C

effective
formation

combustion front

gas phase
species i
liquid-phase

mixture

nonreacted

reaction, reacted, radiation or radial
solid phase, specimen
sa between specimen and ambient
1 transformed coordinate.

m»—g;a»—-«\.m»—nm(ooom

Superscripts
A-C diffusion layer
0 standard state (pure component).

Other symbols

— ensemble average

{> local volume-averaged

{>i local phase-volume averaged.

1. Introduction

Combustion synthesis from compacted powders can
be performed under the uniform (or explosion) mode or
the propagation mode. In the propagation mode, the
specimen is ignited at one end and a combustion wave
travels through it converting the reactants to products.
Here we consider the binary mixtures whose reactions are
sufficiently exothermic such that the propagation occurs
unaided (in contrast to the chemical-oven technique) and
no substantial amount of gas is produced or participates
in the reaction (i.e., gasless). Reviews on combustion
synthesis are presented by Munir [1], Merzhanov [2], and
Varma and Lebrat [3], among others. This method has
been used to produce ceramics, intermetallics, cermets,
and composites.

It has been observed experimentally that complete con-
version may not occur and various intermediate phases
may be formed [1-3]. Also, the maximum temperature in
the combustion region may be substantially below the
adiabatic equilibrium temperature. The lack of complete
reaction is related to the heterogeneous nature of the
polysize, multicomponent particle mixture (affecting the
heat transfer, diffusion, and phase transformation), but

the extent of the influence of the various mechanisms on
the conversion to the final product, is not yet completely
understood.

The modeling of combustion synthesis requires
descriptions at the specimen and particle scales. At the
specimen scale, the axial heat transfer, the volumetric
heat generation, and the peripheral heat losses, determine
the axial temperature distribution. The volumetric heat
generation depends on the particle-level mass transfer,
reaction rates, and phase transformations. The kinetic of
these intraparticle processes depends on the temperature
and chemical composition. The chemical composition
is affected by species diffusion and by the interparticle
availability of reactants. This local (i.e., interparticle)
stoichiometry may differ from the specimen-level average
stoichiometry because of the inherent heterogeneity of
the medium which increases in the presence of a particle
size distribution. The interaction between specimen-level
and particle-level processes determines the final micro-
structure, including the composition and distribution of
product phases and the amount of reactants remaining.
The mechanical and morphological transformations dur-
ing the combustion synthesis [e.g., the formation and
destruction of porosity (i.e., consolidation), the mech-
anical stability of the compacts during reaction, and the
products mechanical and metallographic properties] are
not treated here. The modeling of these processes would
require additional thermomechanical descriptions.

In previous modeling efforts, the specimen-level trans-
port has been modeled using the local volume-averaged
conservation equations and effective properties for
energy and chemical species transport (i.e., macroscopic
continuum models). The local thermal equilibrium
hypothesis is used and the local chemical nonequilibrium
results in product formation. The thermal effect of the
chemical reactions is accounted for in the energy equation
through the volumetric energy generation term (or
through the total enthalpy if an enthalpy formulation is
used). The volumetric reaction rate has been described
either through a specimen-level kinetic model or through
a particle-level diffusion model. In the specimen-level kin-
etic models, the particle-level reactions are either treated
as homogeneous [4-7] or heterogeneous and diffusion
limited [4, 8, 9]. In the particle-level diffusion models, a
unit-cell model is developed and solved simultaneously
with the specimen-level equations [10-18]. Phase change
has been included in the heat of reaction [4], directly
through the enthalpy form of the energy equation [6, 15],
or using the phase-equilibrium conditions at the particle-
level [17, 18]. The liquid phase has been assumed to
wet the solid phase (wettability is related to chemical
reactivity) and to redistribute locally, i.e., engulfing the
solid particles [13-15].

At the particle-level, the differences between the vari-
ous unit-cell models are related to the diffusion process
and the route assumed for the formation of the final
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product. The equilibrium' approach [17, 18] assumes that
atomic interdiffusion of the initial elements occurs and
the product formation follows phase-equilibrium con-
ditions (i.e., phase diagram). The kinetics of phase
nucleation is assumed sufficiently fast and all the phases
present in the phase diagram are formed. If the required
temperature is maintained and sufficient elapsed time is
allowed, conversion to the specimen-level stoichiometric
product is made. The nonequilibrium models assume sim-
plified diffusion processes (which can be viewed as effec-
tive diffusion processes), and postulate the product for-
med [4, 10-15]. The unit-cell models allow for a more
detailed account of the diffusion and for the inclusion of
phase nucleation and transformation mechanisms and
ultimately for a more complete treatment at the particle
level. Another advantage of the unit-cell models is the
ease of inclusion of particle size and particle-size dis-
tribution effects.

The effect of the powders particle-size distribution has
not yet been analyzed in detail. Makino and Law [19]
and Armstrong [12] have accounted for the effect of a
bimodal particle-size distribution in the reaction rates.
Aldushin et al. [20] considered the effect of the particle-
size distribution assuming that the conversion to final
product is complete (adiabatic equilibrium condition).
They have shown that the nonuniform particle-size dis-
tribution does not affect appreciably the preheat region
and the reaction front, but delays the complete con-
version to the final product (because the diffusion in the
larger grains requires longer elapsed times). The final
stages of the combustion process is expected to be influ-
enced by any heat losses, which then would enhance the
effect of the particle-size distribution.

Here, a volume-averaged, specimen-level treatment
along with a diffusion-reaction, nonequilibrium particle-
level model is developed for binary systems. The model
considers the formation of a single compound at the
interface of the two reacting components. Local thermal
equilibrium is assumed, the liquid phase is considered
static, and the combustion front is assumed one-dimen-
sional and propagating uniformly. Two mechanisms for
the effects of the particle-size distribution are considered.
First, since the chemical reaction is diffusion controlled,
particles with different sizes experience different reaction
rates and temperature evolution. This influences the
specimen-level temperature distribution and propagation
speed, as shown by Aldushin et al. [20]. The second
mechanism is related to the local availability of the reac-
tants. Due to the variation in particle size, it is possible
to find regions that are rich in one of the reactants. Once,

"The term equilibrium model is used in a different context
than that of the structural macrokinetics theory as reviewed by
Merzhanov [2].

melted, the low melting-temperature reactant has the
potential to spread over the other reactant particles.
However, the distance separating the melt-rich regions
from the melt-lean regions may be sufficiently large, thus
preventing the timely migration of the melted reactant.
In this case, total product conversion is not achieved,
unless the liquid migration is enhanced (e.g., by capil-
larity) or a large elapsed time at elevated temperature is
allowed [21]. This large diffusion-length effect may be
significant even for small particles because of nonuniform
mixing and agglomeration. Here, the nonuniform par-
ticle-size distribution is treated statistically and incor-
porated into the model.

The objective here is to develop a model capable of
predicting the conversion to the final product and cap-
turing the characteristics of the combustion front, i.e.,
the maximum temperature and the propagation speed. A
temperature form of the energy equation is used with
the goal of providing a direct comparison with simpler
models (i.e., premixed-type combustion models). The
model is developed for systems with a specimen-level
stoichiometry rich in the low-melting temperature reac-
tant and when the melting temperature of the high-melt-
ing temperature reactant is above the maximum tem-
perature in the combustion zone. The extension to other
stoichiometries requires additional considerations. The
presentation is as broad as possible, but use is made of
assumptions that simplify the mathematical treatment
and allow for the analysis of the important physical and
chemical mechanisms. The titanium—aluminum system is
used as an example, but the model applicability is not
restricted to this system.

In the following, an overview of the model is presented
showing the connection between, the specimen-level and
the particle-level treatments. Next, the specimen-level
conservation equations and the thermodynamic con-
siderations are presented. Then the particle-level model
is presented, which incudes the interparticle-diffusion
problem and the intraparticle-diffusion problem. The
presentation begins with the interparticle-diffusion which
depends on the particle-size distribution of the reactants
and determines the amount of reactants available for
chemical reaction. Then, the intraparticle-diffusion prob-
lem is presented which gives the reaction rates needed
on the specimen-level model. Finally, the treatment of
melting and solidification of the reactants and products
is presented.

2. Model overview

At the specimen level, the medium is composed of
particles of species A and B mixed at a specimen-level
mass ratio. For (v,)» and {vy) being the specimen-level
number of moles of A and B, the global reaction leading
to the equilibrium product C is (in a kmol of C,,,-basis)
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va>A+<vp)B _’C<v>~ (1)

Here species A and B are pure components, where
A is a low-melting temperature metal, and C,,, is the
stoichiometric product with composition {(v,» atoms of
A and <{vg) atoms of B.

For a nonequilibrium process, the conversion to C,,,
may not occur. At the particle level, it is assumed that
the reaction between A and B forming C follows the
relation (in a kmol of C-basis)

vaA+vgB -C. 2)

Figures 1 and 2 give an overview of the model. The
model is based on a three-scales treatment, the specimen-
level scale (specimen dimension L), the interparticle-level
scale (interparticle diffusion characteristic length I~ /),
and the intraparticle-level scale (intraparticle diffusion
characteristic length /; ~ Ry). Figure 1 shows a rendering
of the specimen-level and particle-level models. The speci-
men-level model (specimen-level scale) describes the local
volume-averaged distributions of temperature and mass
concentrations. The local volume averaging of a vector
or scalar quantity v is defined by

1
{2 =I7Lde 3)

where V is the volume of the local representative elemen-
tary volume (e.g., a unit cell) [Fig. 1(c)].

For a combustion front travelling from right to left,
the local volume-averaged distributions of temperature
and mass concentrations vary as rendered in Fig. 1(a).
The dashed lines represent the distribution of tem-
perature and mass concentrations for the adiabatic equi-
librium case. The continuous lines correspond to the case
where complete conversion is not achieved. Figure 1(c)
presents a rendering of the unit cell. The unit cell is
assumed to represent the average particle-level behavior
and contains a representative number of all the particle
sizes. This until cell is the local representative elementary
volume of the specimen, over which the variables are
volume averaged. The analysis requires that / < /p < L
where Ly is the combustion zone thickness. In Fig. 1(c)
it is shown the physical model with the melted reactant
engulfing the solid reactant. Reaction occurs by intra-
particle diffusion over the distance /,. The distance sepa-
rating the melt-rich regions to the melt-lean regions (dis-
tance /p) is of the order of the unit cell characteristic
length /. Figure 1(c) also shows the geometric model used
for the treatment of the interparticle and the intraparticle
diffusion. The intraparticle-diffusion model describes the
evolution of the local concentration of the species along
the radius of a single particle (represented as spherical).
Figure 1(b) shows the transformations of the subunit
cell as the combustion front travels along the specimen.
Figure 2 shows the species distribution along the radius
of the particle and the interfaces dividing the species A,
B, and C domains. Figure 2(a) shows a conception of the

intraparticle diffusion for slow diffusion conditions and
Fig. 2(b) shows the nonequilibrium model used here. The
phase diagram for the Al-Ti system and its relation to
the particle-level model are also shown. Both Figs 1 and
2 will be discussed in more detail as the model is
developed. In the following, the specimen-level model is
discussed followed by the particle-level model.

3. Specimen-level model
3.1. Conservation equations

Here, it is assumed that the local thermal equilibrium
exists between the phases. This assumption is based on
the characteristics high thermal conductivity of metals.
Therefore, although the local heat generation due to reac-
tion and phase-change can be large and concentrated, the
temperature gradients experienced at the unit cell level
are assumed to be small when compared to the specimen-
level temperature gradients. No movement of the liquid,
gas, and solid phases is allowed. Some of the effects of
liquid movement will be further discussed in connection
with the interparticle diffusion model. The specimen-level
transport equations are obtained from the volume aver-
aging of the local point-wise conservation equations for
mass, species, and energy. In the local volume-averaged
conservation of species equation the specimen-level
diffusion fluxes are neglected because diffusion of chemi-
cal species is expected to occur in the unit cell scale but
not between unit cells. The point-wise energy equation is
expressed in terms of enthalpy for the liquid and solid
phases and then volume averaged. These volume-aver-
aged energy equations are added, leading to a single
equation for the local volume-averaged enthalpy. The
enthalpies of the components are then related to tem-
perature through the specific heat capacities and the heats
of formation and phase change. A discussion of the ther-
mal treatment of multiphase systems is given by Whitaker
[23] and Kaviany [23, 24] and a derivation of the volume-
averaged equations can be found in [35].

Assuming a quasi-steady propagation of the com-
bustion front at a speed ug, the conservation equations
are transformed by the following coordinate trans-
formation

X, = X+Ugl. 4

In the moving coordinate x,, for a constant ug, the
conservation of species A becomes

d
a uplpay = {fpa) Q)

where {7, 5 is the local volume-averaged homogeneous
(volumetric) reaction rate of species A.

If the reaction is assumed to occur between liquid A
and solid B, the equation for species A,l is
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Fig. 1. (a) Rendering of the specimen-level temperature and mass concentration distributions, (b) variations in the structure of the
subunit cell along the specimen, and (c) modeling of the nonuniform particle-size distribution, showing the subunit cells and the
fraction of melted species A which may not reach the species B particles.

d
dx 1“F<PA1> hpp) + g a0 (6)

where {7y, is the volumetric melting rate of species A.

The consumption of species B and the production of
species C are related to the consumption of A through
their stoichiometric coefficients [equation (2)]. Assuming
that C forms in the solid phase, the conservation of
species C,I depends on the melting rate of C and is given
by

d
d*)ﬁ”F(PC,D = (g )

The local Volume-averaged energy equation is
d<T>
<p>c up{T) = *(<k> kD) 4
+ Alr A <nr AD— Alls,A <nls,A> - Alls,c <nls,c>

A h
B “(T —1) ®)
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Fig. 2. Rendering of the particle-level species A mass fraction distribution for the subunit cell. (a) Conceptual model for the intraparticle
diffusion, (b) the nonequilibrium intraparticle-diffusion model, and (c) the phase-diagram for the titanium—aluminum system.

where {p)c, is the local volume-averaged volumetric heat
capacity, <k) is the effective thermal conductivity, <k,
is the effective radiant thermal conductivity, Ai, 5 is the
heat of reaction (on a mass of A-basis), Ai, is the heat
of melting of species A (on a mass of A-basis), Aj¢ is
the heat of melting of species C (on a mass C-basis), A,

is the peripheral surface area of the specimen, /4, is the
average heat transfer coefficient between the specimen
and the ambient, V is the local volume of the specimen,
and T, is the average ambient temperature.

The heat transfer from the specimen to the ambient
(i.e., peripheral heat losses) has been modeled as a volu-
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metric term and the average heat transfer coefficient
includes the radiation heat transfer. For a cylindrical
specimen, A,/V, = 4/D.

The boundary and inial conditions for equations (5)—
(8) are

X = —0,{pa> = {PaPn><PB) = {PBn>
pe) =LpcrnT) =Ty, {pary =<Lpci> =0 (9)

X, = o0 d<{pa> _ KT _ d{pary _ d{pcry —0 (10
7 dx, dx, dx, dx,

where the subscript n refers to the nonreacted condition

(which is the same as the initial conditions).

The effective transport properties appearing in equa-
tion (8) (i.e., <k) and <{k,») need to be measured or
estimated using approximate models [24].

The combustion front speed uy is an eigenvalue of the
problem and is obtained as part of the solution by the
integration of the A-species equation, i.e.,

" {pade—<Padn

To complete the model, expressions are needed for the
volume-averaged reaction rate and melting rates. These
will be provided by the particle-level model. However,
before presenting the particle-level model, it is necessary
to obtain expressions for the heat of reaction Aj, 4, heat
of melting of C, Aj;c, and the volume-averaged volu-
metric heat capacity {p)c,.

e %J Con> dxy. (1)

— o

3.2. Thermodynamics

Here, the enthalpy of the condensed phases is a func-
tion of temperature only. We consider the formation of
a single product C at the particle level and that T, <
Tisc < Tisp. Also, we assume that the product C has a
specific heat capacity equal to the average specific heat
capacities of the reactants, i.e., Ac, =0 (Newman and
Kopp’s rule [25]); the species have the same (and con-
stant) specific heat capacities in the liquid and solid
phases (¢, = ¢,1); and species A and B are pure sub-
stances (i = 0). The heat of reaction in a mass of A basis
is then given by

Aipp =

o0
i¥e

YA—C

<T> < T‘ls,A

0
e

Yic

AV Tisa <<T) < Tise

-0 .
Irc Aij, ¢

_Ai
Yoo lisa+

T‘ls,(‘ < <T> < 7—‘15,3

Yac

0 .
lrc . Aiy ¢ Yoc,.

— —A — ———A > =T
Yro A+ Yoc Yac g <1 Is.B

(12)

where Yo c = VaMA/(vaMao+vgMyg)and Y c = 1— Y, ¢
are the mass fractions of species A and B in species C.
For T;a < Tiss < T the equations above are changed
accordingly. Equation (12) can be extended if more than
one product is present. The fact that the phase change
temperatures have to be accounted for explicitly on the
heat of reaction is the main disadvantage of the tem-
perature form of the energy equation.

The heat of melting of species C is the difference
between the enthalpy of the liquid solution of A and B
and the enthalpy of the solid C at T, i.e.,

Ails,C = iC,l(Tls.C) - l‘C,s(TISAC)
= YA—CI.A(T‘]&C) + YchiB(’Tls,C)
+Ainc(Tiscs Yac, Yoco) —ics(Tio), (13)

where Ai, ¢ is the heat of mixing (heat of solution) of A
and B at temperature 7 and compositions Y, ¢ and
Ys e

Using the same simplifying assumptions listed above,
Aij ¢ is given by

Ails,C = - l'?,c + YA—CAils,A + Aim,A- (14)

The liquid solution of metals forming intermetallics is
in general strongly nonideal [26]. If for lack of specific
thermodynamic data we assume an ideal-solution
behavior we have

Ails,C = - i?,c + YA—CAils,A- (15)

From the volume-averaged equations (5)—(8), and the
equations for Ai, , and Aij, equations (12) and (15), we
observe that there is no net heat generation for 7> T ¢
when the heat of mixing is neglected.

The effective volumetric heat capacity is given by

<P>Cp = Z <pi>cp,i' (16)
ABC
Under the assumptions stated above, the effective
specific heat capacity c, is constant and calculated from
¢ =Cpc,, = Yac, oAt Yo, Cop- 17)
Also, {p) is constant and given by

P> = {padnt<Pont {Pcn- (18)

Later, {p) will be related with the initial porosity and
composition of the specimen.

4. Particle-level model

In the following, first the effect of variable particle size
(i.e., interparticle diffusion) is considered and then the
intraparticle-diffusion model is discussed followed by the
treatment of the melting of reactants and product.
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4.1. Interparticle diffusion

Powders are characterized by a nonuniform dis-
tribution of particle size and shape. The size and shape
of a single particle affect the diffusion and reaction
through two mechanisms. First, the mass diffusion
depends on the diffusion length and area characteristic
of the particles. Second, the amount of heat generated for
a given diffusion length depends on the volume associated
with that diffusion length. Aris [27] showed that for ste-
ady-state, diffusion-controlled, first-order homogeneous
reactions the reaction rate for arbitrarily shaped particles
can be described as a function of a characteristic length
equal to the ratio between the volume and the surface
area. For the case of diffusion-controlled heterogeneous
reactions there is no general shape factor (which can be
easily shown for the quasi-steady approximation).

Therefore, in the absence of a general method, here the
particles are modeled as ellipsoids with semiaxes
a, = Ry and a, = a; = R, (i.e., prolate spheroids) and
the characteristic radius is given as the radius of the
sphere with the same volume as the ellipsoid particle, i.e.,

Ri = (Rmax,iRilin,i) '3 . (19)

The objective of using an ellipsoid is to approximate
the volume of the powder particles because the total
energy released by the chemical reaction, for complete
reaction, is proportional to the volume of the particles.
Therefore, the radius of the sphere with the equivalent
volume satisfy the specimen-level equilibrium conditions.

The nonuniform particle size distribution has two
effects. First, the volume-averaged reaction rate depends
on the average of the reaction rates for each particle.
Second, the nonuniform particle size results in non-
stoichiometric distribution of reactants at the particle
level. The distance separating the A-rich regions from the
A-lean regions may be large and total product conversion
may not be achieved. To treat the interparticle diffusion
a statistical model, which incorporates the effect of the
particle-size distribution of the high melting-temperature
component, is developed. The model is developed for the
case in which the resistance for the interparticle mass
transfer is assumed large.

4.1.1. Variable particle size

From measurements, a particle size distribution func-
tion f; [based on the radius given by equation (19)] is
determined, where f,AR is the number of particles with
radius between R,—AR/2 and R;+AR/2 divided by the
total number of particles in the sample. The particle size
distribution (or number fraction) f; is normalized, i.e.,
Y fiAR = 1, where N is the number of bins in which
the sample is divided (AR is the bin size).

The ensemble averaging of a quantity v, is given by

o N

Y=Y WfiAR (20)
i=1

and the total amount of a specific property y, is,

N _
Y =NY VfilR=Ny. @n
i=1
For instance, assuming that the reaction rate can be
calculated for each species B particle (with initial radius
Rg.), the total reaction rate for the unit cell is

N _
i, =NY # fAR = Nn,. (22)
i=1

For the volume of the unit cell given by V, = Nﬁ, the
volume-averaged reaction rate is

,;ll"

iy = ik (23)

Similarly, if the mass of species A related to each
species B particle is known, the volume averaged mass
concentration of species A is,

s

$pay = b (24

These values of <7, and {p,) are the ones appearing
in the specimen-level formulation. The major difficulty in
applying equations (23) and (24) is the determination of
mu. The nonuniform particle size distribution affects the
packing and mixing of the powders and a subunit cell
stoichiometry different from the specimen-level stoi-
chiometry may exist. The solution for the packing prob-
lem is beyond the scope of this study. The approximation
assumed here is that species A spreads over the surface
of the B particles as a layer with the same mass, regardless
of the B particle size. In order to satisfy the volume
constraint given by equation (19), an average species B
particle radius can be defined as the radius of the particle
with the average volume, i.c.,

N

R%,l‘l = Z Rl;,!flARﬂ (25)
i=1

where Vi, = 4R}, /3.

For the specimen-level stoichiometry, the average mass
of species A for each particle of species B, m1, ,, is given
by

M = 3 4V 6)
BC)

Given enough elapsed time at high temperatures, or by
increasing the interparticle diffusion, the species A melt
would migrate from the melt-rich to the melt-lean
regions, causing a complete conversion. This is equivalent
to a specimen-level equilibrium model. For large propa-
gation speeds and under the presence of heat losses, this
liquid migration may not be complete. For negligible
liquid migration, the combustion would proceed under
interparticle-level frozen conditions. It is likely that some
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amount of interparticle liquid migration occurs in the
time scale of the combustion synthesis of intermetallics.
However, here we will assume that the resistance to melt
movement is large, which corresponds to a lower limit
for the conversion.

Neglecting the interparticle diffusion of species A, each
species B particle can be treated as an isolated system
and represented by a subunit cell, as depicted in Fig. 1(c).
The subunit cells are assumed to have the same specimen
level porosity ¢,. Note that strictly speaking this assump-
tion would require a redistribution of the porosity around
the particles thus altering the original packing existent in
the unit cell. An alternative description would assume
that the subunit cells are volumes surrounding each par-
ticle and fitting perfectly inside the unit cell. The first
approach leads to simpler equations and is adopted here.
The characteristic length of the subunit cells /; is then
given by

4 Y —C,i,n B R3 in
P = an (l 4 A PB) B.i, 27)
3 YB C,i.npg - én
where,
MA in
Y/\ C,in — A s YB C,in — l_ YA C.,i,n (28)

rnA,i.n + rnB.i.n

where my ;, = ma, and my;, = pR4nRE /3.

The initial local volume-averaged concentrations of
species A and B for each subunit cell are
R (29)
and the total density, if the initial concentration of prod-
ucts is zero (no dilution with the final product), is
<p>i.n = <pA>i.n+<pB>i,n'

From this initial mass of species A and from the initial
radius of the species B particles, the reaction rates can be
calculated (as it will be shown later). The conservation
of mass equation [equations (5)] is applied for each sub-
unit cell resulting in the local volume averaged con-
centrations of species A for each subunit cell. The speci-
men level local volume-averaged concentration of species
A is then obtained from the ensemble averaging over all
the subunit cells using equations (20) and (21). Anal-
ogously, the specimen level volume-averaged reaction
rate is obtained from equation (20) and (21) and used in
the specimen level energy equation [equation (8)]. This
treatment is limited by the practical limits imposed on
the number of subunit cells that can be used (number
of bins used to represent the particle-size distribution
function). Because of this, an average treatment of the
conversion and reaction is desirable.

4.1.2. Average treatment

The assumption made is that the average intraparticle
diffusion behavior of the unit cell can be approximated
by the intraparticle diffusion behavior of the average

species B particle. From the interparticle diffusion model
the final conversion is determined a priori and the average
mass of species A actually available for reaction is applied
on the surface of the average species B particle. Thus, the
equations for determination of the particle-level reaction
rates are applied only to the average species B particle
surrounded by the average species A shell available for
conversion. This approach is adopted here because of its
simplicity.

The determination of the average mass of species A
available for reaction follows. Under the assumption of
no interparticle metal migration, the species B particles
with radius Ry, < Rg, are completely converted to prod-
uct (because of the excess of species A) while those with
R,;, > Ry, are only partially converted (because of the
lack of species A). Thus, the fraction of species B com-
pletely converted (i.e., the volume of species B converted
divided by the total inial volume of species B) is deter-
mined by

N, N
SiVe AR+ Vs, Y. fiAR
Ve i=1 i=N,
FB‘c = V = N
? > fiVsAR
i=1
Nl VB,,'

=Y [ =2 AR+ if,-AR (30)

i=1 Bun i=N,

where Ry, < R, for 1 <i< N,, and Ry, > Rp, for
N, <i<N.

This fraction approaches one as the distribution func-
tion becomes uniform (monosized particles) and zero
as the spread (standard deviation) of the distribution
function increases. From the average mass of species A,
My . the mass of A actually converted is n1, . = Fy 4 p,
where Fy . = Fy. = F..

The characteristic length of the unit cell is given by

F:ﬁ 1 YA—<C>&g Ré,n

3 l1—¢,

The local volume-averaged initial concentrations of
species A and B are

<pA>n = Fc<pA>sa <pB>n = <pB>s (32)

where the average initial concentrations under stoi-
chiometric conditions are

(3D

Yo p}

DO (LS RSN L E S E,
A/s — s B/s — .
m Y o) ﬁ m Yacos &g
Yacor pd Vs oy p8

The determination of the particle-level reaction rate
follows. This discussion applies equally for each particle
Ry, or for the average particle Ry .

4.2. Intraparticle diffusion

Here it is assumed that C has the same composition
of C,;. This assumption is in general valid when the
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specimen-level stoichiometry is rich in the low melting
temperature species A [29, 30].

Figure 2 shows the various radii used to identify the
concentric spherical shell layers. The mass fraction of
elements A and B are Y\ = pa/(pa+ppm) and
Yie = pmy/(pra;+ prey) While the mass fractions of species
A and C are

Yiarc 1 Yiarc
Py P + Y ) ™
Vo= —BC iy (g
Pral T Pe Pra1t+ P
where Yiarc = VaMA/(VAM A+ v M) and

Y[B]—C =1- Y[A]—C-

Here, a simplified treatment of the intraparticle
diffusion is developed, leading to closed-form solutions
for the reaction and melting rates. Figure 2(a) shows a
rendering of the intraparticle diffusion. The extent of the
solid intermetallic layer C, s depends on the type and
kinetics of nucleation of the solid phase from a saturated
liquid solution of A and B atoms. There may be for-
mation of a solid layer covering the B particles (for
heterogeneous nucleation) or there may be precipitation
of solid grains in the solid solution (homogeneous
nucleation). The solubility of species A on the solid inter-
metallic C, s may be small and the species B may present
a solubility range for species A, variable with tempera-
ture. In the absence of interfacial barriers, the interfaces
are under local phase equilibrium and at the interface
between the A-rich intermetallic C and particle B other
intermetallic phases may nucleate when the conditions
are appropriate [this is the shaded region in Fig. 2(a)].
Here, a simplified model is developed, as shown in Figure
2(b). Regarding the product formation, this treatment
assumes that species C is formed through the diffusion-
controlled heterogeneous reaction of species A and B at
the surface of the species B particle. Regarding the
diffusion process, species A and C are assumed to diffuse
through the diffusion layer (A—C layer). The solubility of
species A on species B is assumed negligible. Species C
solid is assumed to have an appreciable solubility of
species A and its interface with the liquid phase is not in
phase equilibrium. The concentration of species A on the
outside surface of the diffusion layer depends on the
presence of species A. The melting of species C is dictated
by diffusion and energy requirements. The A—C mixture
is assumed liquid for concentrations of species A exceed-
ing the liquids line concentration Y, at temperature
{T», and solid for smaller concentrations.

Even this simplified model is complicated by the mov-
ing boundary, the spatially variable density (along the
diffusion layer), the difference between diffusion
coefficients for liquid and solid phases, and the time vari-
ation of the volume-averaged temperature (which affects
the diffusion coefficient). In the search for a simple math-
ematical model, the following approximations are made:
(1) for the AI-Ti system assuming that TiAl; is formed

at the interface, the velocity of the Ry interface d Rg/d¢ is
about 36% of the diffusion velocity of the A atoms at the
interface V4 (this can be obtained from a mass balance
of species B and from the stoichiometry of the reaction).
The velocity of the R interface is proportional to
(Rs/Rc)*. When Re = Ry, dR¢/dT = V,, and it drops to
25% of Vin when R = 2Rg. Therefore for most of the
regime of interest, the boundary velocities are a fraction
of the diffusion velocity. Here, the effect of the boundary
movement on the solution of the diffusion equation is
neglected (it is incorporated later when the particle-level
model is coupled with the specimen-level model). This
assumption becomes worse as the molecular weight of
species B increases. (2) The relation between the mass
fluxes of species A and C at the interface Ry is

’hc|RB = _mAlRB (o3 — Y[B]—Cpg)/ Y[A]—Cpg- Assuming that
C is an ideal solution of A and B,
Mg, = —1alr,@alYia)c, Where ¢, is the volume frac-

tion of A. For TiAl;, ritc| g, = — 1.17m14 | r,. With the ideal
solution hypothesis we have dR,/dt=0 and
mc|g, = —nialg,. For simplicity, we then assume that
species A and C counter-diffuse and the convective vel-
ocity u is therefore zero. (3) The density of the diffusion
layer varies from pl, at Ry, to p%, at R,, which cor-
responds to a 17% variation. Therefore, as a first
approximation the density of the diffusion layer p is
assumed constant. Note that later this effect will be also
incorporated in the model. (4) Finally, the diffusion
coefficient is assumed constant with time. Later it will,
however, be calculated as a function of the volume-aver-
aged temperature. It is important to observe that the
solution of the complete problem for the closed, multi-
shell, spherical system, with moving boundaries, spatially
variable density, and time(temperature)-dependent
diffusion coefficient requires a numerical solution for the
intraparticle diffusion. This leads to additional com-
putational time and, possible, a small effect on the overall
conclusions. As there are many uncertainties about the
nature of the products formed (solid or liquid phase) and
the mechanisms of product formation (growth of a solid
layer precipitation from a saturated liquid solution) there
is very little justification for the development of a math-
ematically complex model. The assumptions adopted
here lead to mathematically simple, first-order solutions
which capture the most important aspects of the phenom-
enon.

Therefore, based on the simplifications above, for a
frame of reference centered on the B particle (which is
assumed static) the diffusion of species A in the A—C
layer is given by

oYy 140, oY,
T 35
a por TACTor (35)

with following initial and boundary conditions

1=0, Re=Ry+ARy;, Y5=0 (36)
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t>0, r=Re, Yr=Yalg 37
t>0, r=Ryg, Yp=0. (38)

For ¢ = 0, in order to avoid a singularity, it is assumed
that the B particles are covered by a small layer ARy of
product. The diffusion coefficient D,_ is assumed to be

an average value for the solid and liquid product layer
and it is modeled as an Arrhenius-type relation [28], i.e.,

Ea"’) (39)
RLT)

Da_c = Dyexp <

where D, is a diffusion pre-exponential factor, AE, , is a
diffusion activation energy, and R, is the universal gas
constant. Here, it is assumed that both the pre-exponen-
tial factor and the activation energy for the interdiffusion
coefficient are constant with concentration.

The value of Y, at R. depends on the extent of the
diffusion of species A. We define a primary-diffusion
regime as the regime (space on the moving coordinate x,)
where there is species A available outside the diffusion
layer. The secondary-diffusion regime is defined as the
regime where there is no species A available outside the
diffusion layer and the concentration of species A at
R diminishes monotonically with respect to time. The
boundary condition stated by equation (37) is then
restated as

Primary-diffusion regime

Yalre=1 (40)
Secondary-diffusion regime

0Y,

or Re

=0. (41)

The solution for the primary and secondary regimes is
discussed below.

4.2.1. Primary-diffusion regime

From the discussion above on the diffusion velocity,
for the primary-diffusion regime a quasi-steady solution
is adopted. Equation (35) then becomes

d L dY,

= 42
ar’ dr 0 42)
with the boundary conditions given by equation (40) and
(38).
The solution to equation (42) is
R- [ r—Ry
=7 <RC7RB>' “3)
The local reaction rate is
0Y,
s = —4nREpDA ¢ 2 (44)
or g,

where p is the average density of the diffusion layer.
Later this average density will be calculated based on the
specimen-level species concentration.

From equation (43),
RgRc
RC - RB

From equation (23), the local volume-averaged reac-
tion rate is then given by
41 RyzRc
ZT Re—Ry PLAc

fop = —4n pDa c. (45)

{(ieay = — (46)
where [I* is either the volume of the subunit cell or the
average volume of the unit-cell.

Note that equation (46) is a function of (7", through
the diffusion coefficient, and of the local volume-averaged
concentration of the reactants and products, which deter-
mine Ry and Rc. Later the radii Rz and R will be related
to the local volume-averaged concentrations of B and C.

4.2.2. Secondary-diffusion regime

In the secondary-diffusion regime, a simple solution
for equation (35) subjected to the boundary conditions
given by equations (41) and (38) is obtained using a
first-order Kantorovich integral method. The solution
is assumed as a product of space and time-dependent
functions. The space-dependent function is assumed to
be parabolic and the coefficients are determined from the
boundary conditions. The diffusion equation is inte-
grated between Ry and R¢ and the convective flux due to
the movement of the interface at R is neglected (when
compared to the diffusion flux). The final equation is
obtained matching the mass of species A, as predicted
for the beginning of the secondary-diffusion regime, with
the mass of species A predicted at the end of the primary-
diffusion regime. This gives

(r—Rp)(RE—Ryr)
TP P (Re—Ry)(4RE—RyRE—2R3Rc—R3})
(47)
From equation (23), the local volume-averaged reac-
tion rate is
{ieay =
12 Ry(Rc + Ry)
I? (Rc—Rg)?*(ARZ+3RcRy+ R3)
In the secondary-diffusion regime all the species A is

inside the diffusion layer. So, from equation (35) we can
eXpress My p as

Mmap ={pa). (49)
Therefore, equation (48) can be restated as

<flr,A> =
Ry(Re+ Ry)
12 s L an —{pa>Drc. (50)
(Rc—Ry)*(4R:+3Rc Ry + Ry)
Equations (46) and (50) could be interpreted as, re-
spectively, a zeroth-order and a first-order reaction kin-
etics if the terms containing the radii could be assumed

3 map

Yy

MpapDac. (48)




1070 A.A.M. Oliveira, M. Kaviany|Int. J. Heat Mass Transfer 42 (1999) 1059-1073

constant for some conditions. However, in general the
various radii that define the unit cell are functions of the
local volume-averaged concentrations and change along
X, as it is shown next.

4.2.3. Coupling of particle- and specimen-level models

From the local volume-averaged concentrations of A,
B and C, for any instant of time (or distance along x,)
Ry and R are determined from

3 13 1/3 3 13 . 1/3
RB:<LT <gﬁ>> , R(,:<Rg+f<ipz>
T ps Tpey

(51
where {pc>* € is the local volume-averaged density of
component C in the A—C (diffusion) layer.

To identify the transition from the primary- to the
secondary-diffusion regime the mass of species A avail-
able outside the diffusion layer m, r is monitored. For
the primary-diffusion regime the total mass of species A
present in the unit cell, m1,, is determined from

my =P<{pry = MA D+ M. (52)
The mass of species A diffused during the primary-

diffusion regime is determined by integration of equation
(43),i.e.,

Mpp = %TEPRC(zRé_RcRB_R}Za)- (53)

Then, m, . is determined from equation (52). The pri-
mary-diffusion regime ends when there is no species A
available outside the diffusion layer.

The local volume-averaged density of the diffusion
layer p = {p)>* is determined from

1
— A-C
p=<p> AV (54)
0 + 0
pPc Pa
where { Y;>* € s the local volume-averaged mass fraction
of component i in the A-C (diffusion) layer. (¥, >* € and
(Y€ are determined from the mass of species A and
C inside the diffusion layer, if R; and R, are known. Ry
and R are calculated from equation (51), where R is a
function of {p»* € through

pe)™ =Y HM LY e, (55)

Therefore, through an iterative procedure, both {p»*
and the geometry of the unit cell can be determined as a
function of {p,), for a given stoichiometry and initial
particle size.

4.3. Phase change

Melting of species A is assumed to occur at {T) = Tp ..
Assuming that enough energy is generated from the
chemical reaction (that is one of the requirements for

propagation), the melting rate of the species A is given
by

{pa>

.
Ax,

(iagy = —u (56)
where Ax, is the size of the control-volume where the
melting takes place. In the limit of Ax, — 0, the melting
of species A takes place at the interface between the liquid
and solid phases, instead of volumetrically. For this limit,
the energy equation requires a jump condition, between
the liquid and solid phase domains.

The phase change of the product C is modeled as a
diffusion-controlled regime followed by an energy-con-
trolled regime. At a given time (or a location on the
transformed coordinate), the temperature of the unit cell
is (T and the mass concentration of species A, {p,>,
determines the Y, distribution within the diffusion layer
[either given by equation (43) or equation (47)]. From
{T), the atomic concentration of species A on the
liquidus line Y4 is determined from the phase diagram
and Y, 1s obtained from equation (34). In the diffusion-
controlled regime, it is assumed that the product layer is
in the liquid state when Y, > Y, and in the solid state
otherwise. The position of the interface between the solid
and the liquid products is determined from equation (43)
and (47), by setting Y, = Y. This gives

Primary-diffusion regime

RcRy

Rey = 57

“ YaruRe +(1=Ya1)Re ©7)
Secondary-diffusion regime

Rci\? 2Y A s R Rc Y, Rc
() Lt (e ) 0= vl

Rc Yalre \Rc Rs Yalr.) ]\ Re

+1=0 (58)

where Y4 |g,. is the local mass fraction of species A at r¢
as determined from equation (43) or (47) and equation
(58) is valid for Ya|g. > Y4y From a mass balance of
species C between Rc and Rc, the mass of C.l, mg, is
given by

Primary-diffusion regime

2 RE+2RE,—3RcRc

mey = 3rp RO (59)
Secondary-diffusion regime
4mp
me; = T(Ré —RZ) —Mag
3Ry(RE—REY) —4(RE+ RE)
X (RE—RE) +6RyRE(RE—RE)) (60)

(Ry—R)*(R+2RcR3+ R2Ry—4RY) |
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Finally, the product melting rate is obtained from
Up dmcvl

<’;ZC‘15> = l3 dxl .

(61)

A similar procedure [equations (56) and (61)], but
under strict equilibrium conditions, is used by Nekrasov
et al. [17] and Smolyakov et al. [18] to obtain the product
melting rate.

When Yalg. < Y the product layer behaves as a
pure substance. In this case, the phase change becomes
energy controlled. For the energy-controlled regime, two
possible solidification paths are possible. If enough
energy is generated by the reaction, the local volume-
averaged temperature would follow the liquidus line tem-
perature, and the amount of liquid is obtained from the
energy equation and the species conservation equations
rearranged as

Aiv s d<dpxc‘1>
d T
=4 |:<p>L'qu<T> — (k) +<kD) cij
d{pa ) d<pa
+Ai, aup filil ’ — Al <d’;1’1>
A,
+ = (T —<(D)). 2

In the case when not enough energy is available, the
solidification would happen instantly where (7) = T},
and the solidification rate is given by

{pcry
Ax,

The first case (equation (62)) occurs for large rates of
interparticle diffusion or uniform particle-size distribu-
tion.

{ey) = —u (63)

5. Conclusions

A three-scale, particle/level/specimen-level treatment
is applied to the gasless compacted-powder combustion
synthesis. The specimen-level treatment is based on the
local volume-averaged equations for species and energy.
The particle-level treatment assumes that the product
is formed through a diffusion-controlled heterogeneous
reaction at the surface of the high melting temperature
reactant. The interparticle diffusion is modeled with two
regimes: an initial primary-diffusion regime followed by
a slower secondary-diffusion regime. The availability of
reactants depends on the interparticle diffusion from the
melt-rich regions to the melt-lean regions and this trans-
port is influenced by the particle-size distribution.

The nonuniform particle-size distribution has two
effects. Initially, since the chemical reaction is diffusion
controlled, particles of different sizes experience different

reaction rates and temperature evolution, thus, influ-
encing the specimen-level temperature distribution and
propagation speed. The average reaction rate can then
be calculated from the ensemble averaging of the reaction
rates for each particle size, or approximated by the reac-
tion rate of a particle with the average size. The second
effect is related to the local availability of the reactants.
A heterogeneous distribution of reactants changes the
local stoichiometry and the distance separating the melt-
rich regions from the melt-lean regions [distance /, in
Fig. 2(a)] may be large. The peripheral heat losses, would
then prevent the timely migration of the melted reactant.
Here we have assumed a large resistance for interparticle
mass transfer and, as a result, the final conversion is
determined a priori.

This possible lack of complete conversion has a strong
effect on the maximum temperature and the propagation
speed. During the time scale characteristic of the com-
bustion of intermetallics some liquid migration is
expected to occur. The modeling of this interparticle
diffusion requires descriptions of the spatial distribution
of melt-rich and melt-lean regions, the transport mech-
anism (potential and transport coefficients), and the path
for the transport. Both the potential and the transport
coefficient may be strongly temperature dependent. These
aspects of the interparticle-diffusion are not treated here.
We plan to include the finite interparticle diffusion as a
follow up. The combined effect of the secondary-diffusion
regime and the interparticle-diffusion would extend the
thickness of the reaction region and may explain the
‘burn-out’ phenomena reported in the literature [12].

Melting of the product follows the phase-equilibrium
conditions and is characterized by a diffusion-controlled
regime followed by an energy-controlled regime. The
melting or solidification of products is an additional
mechanism for redistribution of heat in the combustion
zone, thus affecting the propagation speed and maximum
temperature.

Another aspect not treated here involves the formation
of intermediate compounds. The conversion to the final
product may be preceded by the formation of inter-
mediate compounds, depending on the system and on the
specimen-level stoichiometry (Kachelmeyer [21]), e.g.,
when specimen-level stoichiometries rich in the high-
melting temperature component are used. The formation
of compounds at the interface between two phases
depends on the thermodynamic equilibrium conditions
and on the kinetics of nucleation and growth of the new
phase. There are in turn affected by the atomic diffusion
at the interface (Hoyt and Brush [31], Ma et al. [32])
making it possible the formation of metastable phases
and the equilibrium product may not be formed during
the time-scale of the combustion front propagation. The
formation of intermediate compounds was not addressed
here. The model developed by Hodaj and Desré [33]
based on the critical gradient concept (Vc¢), could be
possibly used to model the product formation.
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In a follow-up article (Part II, Oliveira and Kaviany
[34]) this model will be applied to the titanium—aluminum
system with specimen-level composition corresponding
to TiAl.
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